Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Alzheimers Dement ; 20(2): 1421-1435, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37897797

RESUMEN

This editorial summarizes advances from the Clearance of Interstitial Fluid and Cerebrospinal Fluid (CLIC) group, within the Vascular Professional Interest Area (PIA) of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART). The overarching objectives of the CLIC group are to: (1) understand the age-related physiology changes that underlie impaired clearance of interstitial fluid (ISF) and cerebrospinal fluid (CSF) (CLIC); (2) understand the cellular and molecular mechanisms underlying intramural periarterial drainage (IPAD) in the brain; (3) establish novel diagnostic tests for Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), retinal amyloid vasculopathy, amyloid-related imaging abnormalities (ARIA) of spontaneous and iatrogenic CAA-related inflammation (CAA-ri), and vasomotion; and (4) establish novel therapies that facilitate IPAD to eliminate amyloid ß (Aß) from the aging brain and retina, to prevent or reduce AD and CAA pathology and ARIA side events associated with AD immunotherapy.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Trastornos Cerebrovasculares , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Líquido Extracelular , Angiopatía Amiloide Cerebral/terapia , Angiopatía Amiloide Cerebral/patología , Encéfalo/metabolismo , Trastornos Cerebrovasculares/complicaciones
2.
CPT Pharmacometrics Syst Pharmacol ; 12(1): 62-73, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36281062

RESUMEN

Despite considerable investment into potential therapeutic approaches for Alzheimer's disease (AD), currently approved treatment options are limited. Predictive modeling using quantitative systems pharmacology (QSP) can be used to guide the design of clinical trials in AD. This study developed a QSP model representing amyloid beta (Aß) pathophysiology in AD. The model included mechanisms of Aß monomer production and aggregation to form insoluble fibrils and plaques; the transport of soluble species between the compartments of brain, cerebrospinal fluid (CSF), and plasma; and the pharmacokinetics, transport, and binding of monoclonal antibodies to targets in the three compartments. Ordinary differential equations were used to describe these processes quantitatively. The model components were calibrated to data from the literature and internal studies, including quantitative data supporting the underlying AD biology and clinical data from clinical trials for anti-Aß monoclonal antibodies (mAbs) aducanumab, crenezumab, gantenerumab, and solanezumab. The model was developed for an apolipoprotein E (APOE) ɛ4 allele carrier and tested for an APOE ɛ4 noncarrier. Results indicate that the model is consistent with data on clinical Aß accumulation in untreated individuals and those treated with monoclonal antibodies, capturing increases in Aß load accurately. This model may be used to investigate additional AD mechanisms and their impact on biomarkers, as well as predict Aß load at different dose levels for mAbs with known targets and binding affinities. This model may facilitate the design of scientifically enriched and efficient clinical trials by enabling a priori prediction of biomarker dynamics in the brain and CSF.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Farmacología en Red , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Apolipoproteínas E
3.
Alzheimers Dement ; 19(6): 2287-2297, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454709

RESUMEN

INTRODUCTION: A quantitative model of Alzheimer's disease (AD) based on the amyloid/tau/neurodegeneration biomarker framework (Q-ATN model) was developed to sequentially link amyloid positron emission tomography (PET), tau PET, medial temporal cortical thickness, and clinical outcome (Clinical Dementia Rating - Sum of Boxes; CDR-SB). METHODS: Published data and biologically plausible mechanisms were used to construct, calibrate, and validate the model. Clinical trial simulations were performed for different anti-amyloid antibodies, including a 5-year simulation of subcutaneous gantenerumab treatment. RESULTS: The simulated time-course of biomarkers and CDR-SB was consistent with natural history studies and described the effects of several anti-amyloid antibodies observed in trials with positive and negative (or non-significant) outcomes. The 5-year simulation predicts that the beneficial effects of continued anti-amyloid treatment should increase markedly over time. DISCUSSION: The Q-ATN model offers a novel approach for linking amyloid PET to CDR-SB, and provides theoretical support for the potential clinical benefit of anti-amyloid therapy. HIGHLIGHTS: A semi-mechanistic model was developed to link amyloid/tau/neurodegeneration biomarkers to clinical outcome (Q-ATN model). The Q-ATN model describes the disease progression seen in natural history studies. Model simulations agree well with mean data from the aducanumab EMERGE study. A 5-year simulation of gantenerumab predicts greater benefit with longer treatment.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Amiloide , Tomografía de Emisión de Positrones , Biomarcadores , Proteínas Amiloidogénicas , Péptidos beta-Amiloides , Proteínas tau
4.
Alzheimers Dement (N Y) ; 8(1): e12306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35676943

RESUMEN

Introduction: Amyloid-related imaging abnormalities with edema/effusion (ARIA-E) are commonly observed with anti-amyloid therapies in Alzheimer's disease. We developed a semi-mechanistic, in silico model to understand the time course of ARIA-E and its dose dependency. Methods: Dynamic and statistical analyses of data from 112 individuals that experienced ARIA-E in the open-label extension of SCarlet RoAD (a study of gantenerumab in participants with prodromal Alzheimer's disease) and Marguerite RoAD (as study of Gantenerumab in participants with mild Alzheimer's disease) studies were used for model building. Gantenerumab pharmacokinetics, local amyloid removal, disturbance and repair of the vascular wall, and ARIA-E magnitude were represented in the novel vascular wall disturbance (VWD) model of ARIA-E. Results: The modeled individual-level profiles provided a good representation of the observed pharmacokinetics and time course of ARIA-E magnitude. ARIA-E dynamics were shown to depend on the interplay between drug-mediated amyloid removal and intrinsic vascular repair processes. Discussion: Upon further refinement and validation, the VWD model could inform strategies for dosing and ARIA monitoring in individuals with an ARIA-E history.

5.
Transl Vis Sci Technol ; 10(6): 11, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-34111259

RESUMEN

Purpose: What are the patient characteristics predictive of response to ranibizumab treatment? Methods: Model-based characterization of best-corrected visual acuity (BCVA) time profiles of patients with neovascular age-related macular degeneration under ranibizumab or sham treatment based on 24-month observations of BCVA in 2419 patients from randomized multicenter phase 3 trials of ranibizumab: ANCHOR, MARINA, PIER, and HARBOR. Goodness-of-fit plots and precision of parameter estimates were used for measure of accuracy. Results: The model incorporates a long-term effect on disease progression and an additive and more potent short-term effect of ranibizumab. Response to ranibizumab treatment and progression of the disease were found to be a function of seven baseline characteristics (visual acuity, age, leakage size, central retinal lesion thickness, presence or absence of cyst, type of choroidal neovascularization (CNV), and size of pigment epithelium detachment). A composite score of these seven baseline characteristics was derived and used to categorize response to ranibizumab treatment. The ranibizumab treatment arms of two proof-of-concept studies held out from the model development were used to validate the methodology. Conclusions: A composite score based on seven patient characteristics prior to treatment could be used to discriminate patients with predicted insufficient response to anti-vascular endothelial growth factor treatment. Translational Relevance: The method could be used to create a virtual ranibizumab treatment arm in clinical trials or to reduce the size of a ranibizumab active control arm.


Asunto(s)
Degeneración Macular , Ranibizumab , Inhibidores de la Angiogénesis/uso terapéutico , Humanos , Inyecciones Intravítreas , Degeneración Macular/tratamiento farmacológico , Ranibizumab/uso terapéutico , Tomografía de Coherencia Óptica , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/uso terapéutico
7.
Free Neuropathol ; 12020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37283687

RESUMEN

Aims: Cerebral amyloid angiopathy (CAA) is the accumulation of amyloid beta (Aß) in the walls of cerebral arterioles, arteries and capillaries. Changes in the white matter in CAA are observed as hyperintensities and dilated perivascular spaces on MRI suggesting impairment of fluid drainage but the pathophysiology behind these changes is poorly understood. We tested the hypothesis that proteins associated with clearance of Aß peptides are upregulated in the white matter in cases of CAA. Methods: In this study, we compare the quantitative proteomic profile of white matter from post-mortem brains of patients with CAA and age-matched controls in order to gain insight into the cellular processes and key molecules involved in the pathophysiology of CAA. Results: Our proteomic analysis resulted in the profiling of 3,734 proteins (peptide FDR p<0.05). Of these, 189 were differentially expressed in CAA vs. control. Bioinformatics analysis of these proteins showed significant enrichment of proteins related to cell adhesion | cell-matrix interaction, mitochondrial dysfunction and hypoxia. Upregulated proteins in CAA included EMILIN2, COL4A2, TLN1, CLU, HSPG2. Downregulated proteins included DSP, IDE, HBG1. Conclusions: The present study reports an in-depth quantitative proteomic profiling of white matter from patients with CAA, highlighting extracellular matrix proteins and clusterin as key molecules in the pathophysiology of white matter changes in cases of CAA.

9.
Mol Pharm ; 17(2): 695-709, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31876425

RESUMEN

Therapeutic antibodies administered intravitreally are the current standard of care to treat retinal diseases. The ocular half-life (t1/2) is a key determinant of the duration of target suppression. To support the development of novel, longer-acting drugs, a reliable determination of t1/2 is needed together with an improved understanding of the factors that influence it. A model-based meta-analysis was conducted in humans and nonclinical species (rat, rabbit, monkey, and pig) to determine consensus values for the ocular t1/2 of IgG antibodies and Fab fragments. Results from multiple literature and in-house pharmacokinetic studies are presented within a mechanistic framework that assumes diffusion-controlled drug elimination from the vitreous. Our analysis shows, both theoretically and experimentally, that the ocular t1/2 increases in direct proportion to the product of the hydrodynamic radius of the macromolecule (3.0 nm for Fab and 5.0 nm for IgG) and the square of the radius of the vitreous globe, which varies approximately 24-fold from the rat to the human. Interspecies differences in the proportionality factors are observed and discussed in mechanistic terms. In addition, mathematical formulae are presented that allow prediction of the ocular t1/2 for molecules of interest. The utility of these formulae is successfully demonstrated in case studies of aflibercept, brolucizumab, and PEGylated Fabs, where the predicted ocular t1/2 values are found to be in reasonable agreement with the experimental data available for these molecules.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Productos Biológicos/administración & dosificación , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Inmunoglobulina G/administración & dosificación , Inyecciones Intravítreas/métodos , Receptores de Factores de Crecimiento Endotelial Vascular/administración & dosificación , Proteínas Recombinantes de Fusión/administración & dosificación , Animales , Anticuerpos Monoclonales Humanizados/farmacocinética , Productos Biológicos/farmacocinética , Difusión , Semivida , Haplorrinos , Humanos , Hidrodinámica , Conejos , Ratas , Proteínas Recombinantes de Fusión/farmacocinética , Enfermedades de la Retina/tratamiento farmacológico , Porcinos , Distribución Tisular , Cuerpo Vítreo/efectos de los fármacos , Cuerpo Vítreo/metabolismo
10.
JCI Insight ; 4(22)2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31593554

RESUMEN

Anemia of ß-thalassemia is caused by ineffective erythropoiesis and reduced red cell survival. Several lines of evidence indicate that iron/heme restriction is a potential therapeutic strategy for the disease. Glycine is a key initial substrate for heme and globin synthesis. We provide evidence that bitopertin, a glycine transport inhibitor administered orally, improves anemia, reduces hemolysis, diminishes ineffective erythropoiesis, and increases red cell survival in a mouse model of ß-thalassemia (Hbbth3/+ mice). Bitopertin ameliorates erythroid oxidant damage, as indicated by a reduction in membrane-associated free α-globin chain aggregates, in reactive oxygen species cellular content, in membrane-bound hemichromes, and in heme-regulated inhibitor activation and eIF2α phosphorylation. The improvement of ß-thalassemic ineffective erythropoiesis is associated with diminished mTOR activation and Rab5, Lamp1, and p62 accumulation, indicating an improved autophagy. Bitopertin also upregulates liver hepcidin and diminishes liver iron overload. The hematologic improvements achieved by bitopertin are blunted by the concomitant administration of the iron chelator deferiprone, suggesting that an excessive restriction of iron availability might negate the beneficial effects of bitopertin. These data provide important and clinically relevant insights into glycine restriction and reduced heme synthesis strategies for the treatment of ß-thalassemia.


Asunto(s)
Eritrocitos/efectos de los fármacos , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Piperazinas/farmacología , Sulfonas/farmacología , Talasemia beta/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Eritrocitos/metabolismo , Femenino , Hemólisis/efectos de los fármacos , Hierro/metabolismo , Sobrecarga de Hierro/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
11.
Mol Pharm ; 15(7): 2770-2784, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29734810

RESUMEN

Neovascular age-related macular degeneration (wet AMD) results from the pathological angiogenesis of choroidal capillaries, which leak fluid within or below the macular region of the retina. The current standard of care for treating wet AMD utilizes intravitreal injections of anti-VEGF antibodies or antibody fragments to suppress ocular vascular endothelial growth factor (VEGF) levels. While VEGF suppression has been demonstrated in wet AMD patients by serial measurements of free-VEGF concentrations in aqueous humor samples, it is presumed that anti-VEGF molecules also permeate across the inner limiting membrane (ILM) of the retina as well as the retinal pigmented epithelium (RPE) and suppress VEGF levels in the retina and/or choroidal regions. The latter effects are inferred from serial optical coherence tomography (OCT) measurements of fluid in the retinal and sub-retinal spaces. In order to gain theoretical insights to the dynamics of retinal levels of free-VEGF following intravitreal injection of anti-VEGF molecules, we have extended our previous two-compartment pharmacokinetic/pharmacodynamic (PK/PD) model of ranibizumab-VEGF suppression in vitreous and aqueous humors to a three-compartment model that includes the retinal compartment. In the new model, reference values for the macromolecular permeability coefficients between retina and vitreous ( pILM) and between retina and choroid ( pRPE) were estimated from PK data obtained in rabbit. With these values, the three-compartment model was used to re-analyze the aqueous humor levels of free-VEGF obtained in wet AMD patients treated with ranibizumab and to compare them to the simulated retinal levels of free-VEGF, including the observed variability in PK and PD. We have also used the model to explore the impact of varying pILM and pRPE to assess the case in which an anti-VEGF molecule is impermeable to the ILM and to assess the potential effects of AMD pathology on the RPE barrier. Our simulations show that, for the reference values of pILM and pRPE, the simulated duration of VEGF suppression in the retina is approximately 50% shorter than the observed duration of VEGF suppression in the aqueous humor, a finding that may explain the short duration of suppressed disease activity in the "high anti-VEGF demand" patients reported by Fauser and Muether ( Br. J. Ophthalmol. 2016, 100, 1494-1498 ). At 10-fold lower values of pRPE, the durations of VEGF suppression in the retina and aqueous humor are comparable. Lastly we have used the model to explore the impact of dose and binding parameters on the duration and depth of VEGF suppression in the aqueous and retinal compartments. Our simulations with the three-compartment PK/PD model provide new insights into inter-patient variability in response to anti-VEGF therapy and offer a mechanistic framework for developing treatment regimens and molecules that may prolong the duration of retinal VEGF suppression.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Ranibizumab/farmacología , Retina/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Degeneración Macular Húmeda/tratamiento farmacológico , Inhibidores de la Angiogénesis/uso terapéutico , Humor Acuoso/efectos de los fármacos , Humor Acuoso/metabolismo , Humanos , Inyecciones Intravítreas , Modelos Biológicos , Ranibizumab/uso terapéutico , Retina/efectos de los fármacos , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/patología , Cuerpo Vítreo/efectos de los fármacos , Cuerpo Vítreo/metabolismo , Degeneración Macular Húmeda/patología
12.
Mol Pharm ; 14(8): 2690-2696, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28631484

RESUMEN

Intravitreally (IVT) injected macromolecules for the treatment of age-related macular degeneration must permeate through the inner limiting membrane (ILM) into the retina and through the retinal pigment epithelium (RPE) to enter the choroid. A quantitative understanding of intraocular transport mechanisms, elimination pathways, and the effect of molecular size is currently incomplete. We present a semimechanistic, 3-compartment (retina, vitreous, and aqueous) pharmacokinetic (PK) model, expressed using linear ordinary differential equations (ODEs), to describe the molecular concentrations following a single IVT injection. The model was fit to experimental rabbit data, with Fab, Fc, IgG, and IgG null antibodies and antibody fragments, to estimate key ocular pharmacokinetic parameters. The model predicts an ocular half-life, t1/2, which is the same for all compartments and dependent on the hydrodynamic radius (Rh) of the respective molecules, consistent with observations from the experimental data. Estimates of the permeabilities of the RPE and ILM are derived for Rh values ranging from 2.5 to 4.9 nm, and are found to be in good agreement with ex-vivo measurements from bovine eyes. We show that the ratio of these permeabilities largely determines the ratio of the molecular concentrations in the retina and vitreal compartments and their dependence on Rh. The model further provides estimates for the ratio of fluxes corresponding to the elimination pathways from the eye, i.e., aqueous humor to retina/choroid, which increase from 5:1 to 7:1 as Rh decreases. Our semimechanistic model provides a quantitative framework for interpreting ocular PK and the effects of molecule size on rate-determining parameters. We have shown that intraocular permeabilities can be reasonably estimated from 3-compartment ocular PK data and can determine how these parameters influence the half-life, retinal permeation, and elimination of intravitreally injected molecules from the eye.


Asunto(s)
Anticuerpos/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Anticuerpos/administración & dosificación , Coroides/metabolismo , Inmunoglobulina G/metabolismo , Inyecciones Intravítreas , Modelos Teóricos , Conejos , Cuerpo Vítreo/metabolismo
13.
J Lipid Res ; 58(7): 1325-1337, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28442497

RESUMEN

We developed an in silico mathematical model of retinal cholesterol (Ch) dynamics (RCD) to quantify the physiological rate of Ch turnover in the rod outer segment (ROS), the lipoprotein transport mechanisms by which Ch enters and leaves the outer retina, and the rates of drusen growth and macrophage-mediated clearance in dry age-related macular degeneration. Based on existing experimental data and mechanistic hypotheses, we estimated the Ch turnover rate in the ROS to be 1-6 pg/mm2/min, dependent on the rate of Ch recycling in the outer retina, and found comparable rates for LDL receptor-mediated endocytosis of Ch by the retinal pigment epithelium (RPE), ABCA1-mediated Ch transport from the RPE to the outer retina, ABCA1-mediated Ch efflux from the RPE to the choroid, and the secretion of 70 nm ApoB-Ch particles from the RPE. The drusen growth rate is predicted to increase from 0.7 to 4.2 µm/year in proportion to the flux of ApoB-Ch particles. The rapid regression of drusen may be explained by macrophage-mediated clearance if the macrophage density reaches ∼3,500 cells/mm2 The RCD model quantifies retinal Ch dynamics and suggests that retinal Ch turnover and recycling, ApoB-Ch particle efflux, and macrophage-mediated clearance may explain the dynamics of drusen growth and regression.


Asunto(s)
Colesterol/metabolismo , Simulación por Computador , Degeneración Macular/metabolismo , Retina/metabolismo , Transporte Biológico , Humanos , Degeneración Macular/fisiopatología , Epitelio Pigmentado de la Retina/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo
14.
Mol Pharm ; 13(9): 2941-50, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-26726925

RESUMEN

Intravitreal injection of anti-VEGF (vascular endothelial growth factor) antibodies or antibody fragments has been shown to be a highly effective treatment for neovascular age-related macular degeneration (wet AMD). The ocular half-life (t1/2) of these large molecules, determined in ocular fluids or derived from serum levels, varies with molecular size and is larger in humans than in preclinical animal species. The high affinity binding of VEGF to these molecules lowers the free concentration of VEGF and reduces its occupancy on VEGF receptors in ocular tissues. To understand the biophysical determinants of t1/2 for anti-VEGF antibodies and the time-course of VEGF in ocular fluids, we developed a mechanistic model of intravitreal pharmacokinetics (IVT PK) for anti-VEGF antibodies and combined it with a mechanistic model of the pharmacodynamics (RVR PD) of VEGF suppression by ranibizumab, an anti-VEGF recombinant, humanized monoclonal antibody fragment (Fab). Our IVT PK model predicts that the ocular t1/2 of a large molecule will be approximately four-times the calculated value of its vitreous diffusion time (Tdiff), defined as rvit(2)/6D, where rvit is the radius of the vitreous chamber in that species (modeled as a sphere), and D is the diffusion coefficient of the molecule in physiological saline at 37 °C obtained from the Stokes-Einstein relation. This prediction is verified from a compilation of data and calculations on various large molecules in the human, monkey, rabbit, and rat and is consistent with the reported t1/2 values of ranibizumab in humans (mean value 7.9 days) and the calculated Tdiff of 1.59 days. Our RVR PD model is based on the publication of Saunders et al. (Br. J. Ophthalmol. 2015, 99, 1554-1559) who reported data on the time-course of VEGF levels in aqueous humor samples obtained from 31 patients receiving ranibizumab treatment for wet AMD and developed a compartmental mathematical model to describe the VEGF suppression profiles. We modified Saunders' model with the known 2:1 stoichiometry of ranibizumab-VEGF binding and included the association and dissociation kinetics of the binding reactions. Using the RVR PD model, we reanalyzed Saunders' data to estimate the in vivo dissociation constant (KD) between ranibizumab and VEGF. Our analysis demonstrates the delicate interrelationship between the in vivo KD value and the intravitreal half-life and yields an in vivo KD estimate that is appreciably larger than the in vitro KD estimates reported in the literature. Potential explanations for the difference between the in vivo and in vitro KD values, which appear to reflect the different methodologies and experimental conditions, are discussed. We conclude that the combined mechanistic model of IVT PK and RVR PD provides a useful framework for simulating the effects of dose, KD, and the molecular weight of VEGF-binding molecules on the duration of VEGF suppression.


Asunto(s)
Ranibizumab/farmacocinética , Ranibizumab/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Degeneración Macular Húmeda/tratamiento farmacológico , Degeneración Macular Húmeda/metabolismo , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/farmacocinética , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Haplorrinos , Humanos , Inyecciones Intravítreas , Cinética , Modelos Teóricos , Conejos , Ranibizumab/administración & dosificación , Ratas , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
15.
J Lipid Res ; 57(1): 46-55, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26522778

RESUMEN

The recent failures of cholesteryl ester transport protein inhibitor drugs to decrease CVD risk, despite raising HDL cholesterol (HDL-C) levels, suggest that pharmacologic increases in HDL-C may not always reflect elevations in reverse cholesterol transport (RCT), the process by which HDL is believed to exert its beneficial effects. HDL-modulating therapies can affect HDL properties beyond total HDL-C, including particle numbers, size, and composition, and may contribute differently to RCT and CVD risk. The lack of validated easily measurable pharmacodynamic markers to link drug effects to RCT, and ultimately to CVD risk, complicates target and compound selection and evaluation. In this work, we use a systems pharmacology model to contextualize the roles of different HDL targets in cholesterol metabolism and provide quantitative links between HDL-related measurements and the associated changes in RCT rate to support target and compound evaluation in drug development. By quantifying the amount of cholesterol removed from the periphery over the short-term, our simulations show the potential for infused HDL to treat acute CVD. For the primary prevention of CVD, our analysis suggests that the induction of ApoA-I synthesis may be a more viable approach, due to the long-term increase in RCT rate.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , HDL-Colesterol/metabolismo , Hipolipemiantes/farmacología , Apolipoproteína A-I/biosíntesis , Apolipoproteína A-I/efectos de los fármacos , Apolipoproteína A-I/metabolismo , Transporte Biológico , Biomarcadores/sangre , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/prevención & control , Colesterol/metabolismo , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Modelos Biológicos , Quinazolinas/farmacología , Quinazolinonas , Factores de Riesgo , Regulación hacia Arriba
16.
JAMA ; 314(6): 570-81, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26262795

RESUMEN

IMPORTANCE: Testosterone use in older men is increasing, but its long-term effects on progression of atherosclerosis are unknown. OBJECTIVE: To determine the effect of testosterone administration on subclinical atherosclerosis progression in older men with low or low-normal testosterone levels. DESIGN, SETTING, AND PARTICIPANTS: Testosterone's Effects on Atherosclerosis Progression in Aging Men (TEAAM) was a placebo-controlled, double-blind, parallel-group randomized trial involving 308 men 60 years or older with low or low-normal testosterone levels (100-400 ng/dL; free testosterone <50 pg/mL), recruited at 3 US centers. Recruitment took place between September 2004 and February 2009; the last participant completed the study in May 2012. INTERVENTIONS: One hundred fifty-six participants were randomized to receive 7.5 g of 1% testosterone and 152 were randomized to receive placebo gel packets daily for 3 years. The dose was adjusted to achieve testosterone levels between 500 and 900 ng/dL. MAIN OUTCOMES AND MEASURES: Coprimary outcomes included common carotid artery intima-media thickness and coronary artery calcium; secondary outcomes included sexual function and health-related quality of life. RESULTS: Baseline characteristics were similar between groups: patients were a mean age of 67.6 years; 42% had hypertension; 15%, diabetes; 15%, cardiovascular disease; and 27%, obesity. The rate of change in intima-media thickness was 0.010 mm/year in the placebo group and 0.012 mm/year in the testosterone group (mean difference adjusted for age and trial site, 0.0002 mm/year; 95% CI, -0.003 to 0.003, P = .89). The rate of change in the coronary artery calcium score was 41.4 Agatston units/year in the placebo group and 31.4 Agatston units/year in the testosterone group (adjusted mean difference, -10.8 Agatston units/year; 95% CI, -45.7 to 24.2; P = .54). Changes in intima-media thickness or calcium scores were not associated with change in testosterone levels among individuals assigned to receive testosterone. Sexual desire, erectile function, overall sexual function scores, partner intimacy, and health-related quality of life did not differ significantly between groups. Hematocrit and prostate-specific antigen levels increased more in testosterone group. CONCLUSIONS AND RELEVANCE: Among older men with low or low-normal testosterone levels, testosterone administration for 3 years vs placebo did not result in a significant difference in the rates of change in either common carotid artery intima-media thickness or coronary artery calcium nor did it improve overall sexual function or health-related quality of life. Because this trial was only powered to evaluate atherosclerosis progression, these findings should not be interpreted as establishing cardiovascular safety of testosterone use in older men. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00287586.


Asunto(s)
Aterosclerosis/inducido químicamente , Grosor Intima-Media Carotídeo , Testosterona/efectos adversos , Anciano , Calcio/análisis , Vasos Coronarios/química , Progresión de la Enfermedad , Método Doble Ciego , Estado de Salud , Humanos , Hipertensión , Masculino , Persona de Mediana Edad , Obesidad , Calidad de Vida , Disfunciones Sexuales Fisiológicas/complicaciones , Disfunciones Sexuales Fisiológicas/etiología , Testosterona/sangre , Testosterona/deficiencia , Testosterona/uso terapéutico , Resultado del Tratamiento
17.
PLoS Comput Biol ; 10(3): e1003509, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24625468

RESUMEN

High-density lipoprotein (HDL) is believed to play an important role in lowering cardiovascular disease (CVD) risk by mediating the process of reverse cholesterol transport (RCT). Via RCT, excess cholesterol from peripheral tissues is carried back to the liver and hence should lead to the reduction of atherosclerotic plaques. The recent failures of HDL-cholesterol (HDL-C) raising therapies have initiated a re-examination of the link between CVD risk and the rate of RCT, and have brought into question whether all target modulations that raise HDL-C would be atheroprotective. To help address these issues, a novel in-silico model has been built to incorporate modern concepts of HDL biology, including: the geometric structure of HDL linking the core radius with the number of ApoA-I molecules on it, and the regeneration of lipid-poor ApoA-I from spherical HDL due to remodeling processes. The ODE model has been calibrated using data from the literature and validated by simulating additional experiments not used in the calibration. Using a virtual population, we show that the model provides possible explanations for a number of well-known relationships in cholesterol metabolism, including the epidemiological relationship between HDL-C and CVD risk and the correlations between some HDL-related lipoprotein markers. In particular, the model has been used to explore two HDL-C raising target modulations, Cholesteryl Ester Transfer Protein (CETP) inhibition and ATP-binding cassette transporter member 1 (ABCA1) up-regulation. It predicts that while CETP inhibition would not result in an increased RCT rate, ABCA1 up-regulation should increase both HDL-C and RCT rate. Furthermore, the model predicts the two target modulations result in distinct changes in the lipoprotein measures. Finally, the model also allows for an evaluation of two candidate biomarkers for in-vivo whole-body ABCA1 activity: the absolute concentration and the % lipid-poor ApoA-I. These findings illustrate the potential utility of the model in drug development.


Asunto(s)
Biomarcadores/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Algoritmos , Teorema de Bayes , Transporte Biológico , Calibración , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/metabolismo , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Biología Computacional/métodos , Femenino , Regulación de la Expresión Génica , Humanos , Masculino
18.
Menopause ; 21(6): 612-23, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24281237

RESUMEN

OBJECTIVE: This study aims to determine the dose-dependent effects of testosterone on sexual function, body composition, muscle performance, and physical function in hysterectomized women with or without oophorectomy. METHODS: Seventy-one postmenopausal women who previously underwent hysterectomy with or without oophorectomy and had total testosterone levels less than 31 ng/dL or free testosterone levels less than 3.5 pg/mL received a standardized transdermal estradiol regimen during the 12-week run-in period and were randomized to receive weekly intramuscular injections of placebo or 3, 6.25, 12.5, or 25 mg of testosterone enanthate for 24 weeks. Total and free testosterone levels were measured by liquid chromatography-tandem mass spectrometry and equilibrium dialysis, respectively. The primary outcome was change in sexual function measured by the Brief Index of Sexual Functioning for Women. Secondary outcomes included changes in sexual activity, sexual distress, Derogatis Interview for Sexual Functioning, lean body mass, fat mass, muscle strength and power, and physical function. RESULTS: Seventy-one women were randomized; five groups were similar at baseline. Sixty-two women with analyzable data for the primary outcome were included in the final analysis. The mean on-treatment total testosterone concentrations were 19, 78, 102, 128, and 210 ng/dL in the placebo, 3-mg, 6.25-mg, 12.5-mg, and 25-mg groups, respectively. Changes in composite Brief Index of Sexual Functioning for Women scores, thoughts/desire, arousal, frequency of sexual activity, lean body mass, chest-press power, and loaded stair-climb power were significantly related to increases in free testosterone concentrations; compared with placebo, changes were significantly greater in women assigned to the 25-mg group, but not in women in the lower-dose groups. Sexual activity increased by 2.7 encounters per week in the 25-mg group. The frequency of androgenic adverse events was low. CONCLUSIONS: Testosterone administration in hysterectomized women with or without oophorectomy for 24 weeks was associated with dose and concentration-dependent gains in several domains of sexual function, lean body mass, chest-press power, and loaded stair-climb power. Long-term trials are needed to weigh improvements in these outcomes against potential long-term adverse effects.


Asunto(s)
Andrógenos/administración & dosificación , Histerectomía , Sexualidad/efectos de los fármacos , Testosterona/análogos & derivados , Testosterona/sangre , Andrógenos/efectos adversos , Nivel de Alerta/efectos de los fármacos , Composición Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Persona de Mediana Edad , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Ovariectomía , Posmenopausia , Conducta Sexual/efectos de los fármacos , Testosterona/administración & dosificación , Testosterona/efectos adversos
19.
J Clin Pharmacol ; 53(6): 589-600, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23606523

RESUMEN

Predicting late phase outcomes from early-phase findings can help inform decisions in drug development. If the measurements in early-phase differ from those in late phase, forecasting is more challenging. In this paper, we present a model-based approach for predicting glycosylated hemoglobin (HbA1c) in late phase using glucose and insulin concentrations from an early-phase study, investigating an anti-diabetic treatment. Two previously published models were used; an integrated glucose and insulin (IGI) model for meal tolerance tests and an integrated glucose-red blood cell-HbA1c (IGRH) model predicting the formation of HbA1c from the average glucose concentration (Cg,av ). Output from the IGI model was used as input to the IGRH model. Parameters of the IGI model and drug effects were estimated using data from a phase1 study in 59 diabetic patients receiving various doses of a glucokinase activator. Cg,av values were simulated according to a Phase 2 study design and used in the IGRH model for predictions of HbA1c. The performance of the model-based approach was assessed by comparing the predicted to the actual outcome of the Phase 2 study. We have shown that this approach well predicts the longitudinal HbA1c response in a 12-week study using only information from a 1-week study where glucose and insulin concentrations were measured.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hemoglobina Glucada/metabolismo , Hipoglucemiantes/uso terapéutico , Modelos Biológicos , Anciano , Glucemia/efectos de los fármacos , Simulación por Computador , Toma de Decisiones , Diabetes Mellitus Tipo 2/sangre , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Femenino , Glucoquinasa/efectos de los fármacos , Glucoquinasa/metabolismo , Humanos , Hipoglucemiantes/administración & dosificación , Insulina/sangre , Masculino , Persona de Mediana Edad , Factores de Tiempo
20.
Clin Chem ; 59(6): 949-58, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23426429

RESUMEN

BACKGROUND: HDL size and composition vary among individuals and may be associated with cardiovascular disease and diabetes. We investigated the theoretical relationship between HDL size and composition using an updated version of the spherical model of lipoprotein structure proposed by Shen et al. (Proc Natl Acad Sci U S A 1977;74:837-41.) and compared its predictions with experimental data from the Women's Health Study (WHS). METHODS: The Shen model was updated to predict the relationship between HDL diameter and the ratio of HDL-cholesterol (HDL-C) to apolipoprotein A-I (ApoA-I) plasma concentrations (HDL-C/ApoA-I ratio). In the WHS (n = 26 772), nuclear magnetic resonance spectroscopy (NMR) was used to measure the mean HDL diameter (d(mean,NMR)) and particle concentration (HDL-P); HDL-C and ApoA-I (mg/dL) were measured by standardized assays. RESULTS: The updated Shen model predicts a quasilinear increase of HDL diameter with the HDL-C/ApoA-I ratio, consistent with the d(mean,NMR) values from WHS, which ranged between 8.0 and 10.8 nm and correlated positively with the HDL-C/ApoA-I ratio (r = 0.608, P < 2.2 × 10(-16)). The WHS data were further described by a linear regression equation: d(WHS) = 4.66 nm + 12.31(HDL-C/Apo-I), where d(WHS) is expressed in nanometers. The validity of this equation for estimating HDL size was assessed with data from cholesteryl ester transfer protein deficiency and pharmacologic inhibition. We also illustrate how HDL-P can be estimated from the HDL size and ApoA-I concentration. CONCLUSIONS: This study provides a large-scale experimental examination of the updated Shen model. The results offer new insights into HDL structure, composition and remodeling and suggest that the HDL-C/ApoA-I ratio might be a readily available biomarker for estimating HDL size and HDL-P.


Asunto(s)
Apolipoproteína A-I/química , HDL-Colesterol/química , Lipoproteínas HDL/química , Modelos Teóricos , Tamaño de la Partícula , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Salud de la Mujer
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...